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Abstract
A method of searching for boundary conditions consistent with the integrability
property is suggested for discrete chains. Generating functions of conserved
quantities of the corresponding finite-dimensional reductions are given in terms
of the L, A pairs.

PACS numbers: 02.30.Ik, 02.30.Uu, 02.30.Jr, 02.40.-k, 05.45.-a

1. Introduction

In [1] a list of double discrete chains of nonrelativistic Toda type

qm+1,n = F(qm,n+1, qm,n, qm,n−1, qm−1,n) (1)

is given admitting the so-called duality transformation. It consists of eight equations which
are not reduced to each other by point transformations. The list contains well known equations
having physical significance such as double discrete versions of the Toda chain [2, 3] and the
Heisenberg equation [4], and new ones as well (more detailed references can be found in [1]).

It is convenient to represent all of the chains in the following form:

(Tm − 1)p(x) = (Tn − 1)r(y) (2)

where x = q − q−1,0, y = q − q0,−1 and abbreviation of indices is used such that q = qm,n,
qij = qm+i,n+j . Here Tm and Tn are the shift operators on the first and second subscripts
respectively so that Tmq = q1,0 and Tnq = q0,1. Let us reproduce the list of chains:

(Tm − 1)
1

x
= (Tn − 1)

1

y
(3)

(Tm − 1)ex = (Tn − 1)ey (4)

(Tm − 1)
1

ex − 1
= (Tn − 1)

1

ey − 1
(5)

(Tm − 1) log x = (Tn − 1) log y (6)

0305-4470/01/4810369+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK 10369

http://stacks.iop.org/ja/34/10369


10370 I T Habibullin and T G Kazakova

(Tm − 1) log

(
1 − 1

x

)
= (Tn − 1) log

(
1 − 1

y

)
(7)

(Tm − 1) log(ex − 1) = (Tn − 1) log(ey − 1) (8)

(Tm − 1)x = (Tn − 1) log(ey + 1) (9)

(Tm − 1) log

(
ex − µ

ex − 1

)
= (Tn − 1)

(
ey − µ

ey − 1

)
. (10)

The purpose of the paper is to study cut-off conditions for these chains that preserve their
integrability property. By analogy to the PDE case one can refer to them as boundary conditions
consistent with integrability. The discrete chains represented in the list above are less studied
from this point of view than are PDEs and differential difference lattices. An effective way
to search for boundary conditions was proposed by Sklyanin [5]. It is formulated in terms of
the so-called R-matrix which is a solution of the classical Yang–Baxter equation. The method
originally developed for differential equations was later applied to the time-discrete models [2].

We use an alternative method based on classical symmetries of the associated linear
operators which was successfully applied recently to the KdV type of PDEs [7]. The main
difference between this method and the one mentioned above is that in the former case it is not
necessary to use the R-matrix but only the L,A pair. The method can be applied to models of
dimension higher than 1 + 1.

We start with the assumption that equation (1) is represented as a consistency condition
of two linear equations of the following form (L,A pair):

Y (m, n + 1, λ) = L([q], λ)Y (m, n, λ) (11)

Y (m + 1, n, λ) = A([q], λ)Y (m, n, λ) (12)

where L and A depend on a finite number of shifts of the field variable q = qm,n and on the
parameter λ. We impose a cut-off constraint (boundary condition) at the spatial point n = N

such that ∀m
qm,N = f (m, qm,N+1, qm,N+2, . . . , qm,N+M). (13)

Under this constraint the lattice (1) is reduced from the line −∞ < n < +∞ to the semi-line
n � N + 1.

Generally, the pair of linear equations (11), (12) admits a group (G) of classical symmetries
of the form Y → Ȳ = HY , λ → λ̄ = h(λ), i.e. the equations are not changed under such
changes of variables. Here the matrix-valued function H = H(m, [q], λ) depends only on a
finite number of shifts of q. Notice that in some cases the group G may contain only the trivial
identical transform.

Definition. We will call the boundary condition (13) consistent with theL,Apair if the equation

Y (m + 1, N, λ) = A([q], λ)|qm,N=FY (m,N, λ) (14)

admits at least one additional linear transformation of the form

Ỹ (m,N, h(λ)) = H(m, [q], λ)Y (m,N, λ) h = h(λ). (15)

In other words, equation (12) taken at the point n = N after replacing the variable qm,N with
the rhs of (13) should get an extra linear symmetry. It is important that this symmetry does not
belong to the group G.

The definition offers an algorithm for looking for integrable boundary conditions for
chains. We shall demonstrate that the algorithm is simple and effective.

In section 2 we list the integrable boundary conditions for chains from (3)–(10). For
chains (3), (7) L,A pairs were found by Adler and for (4), (5), (8)–(10) by Suris. For chain (6)
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the L,A pair is constructed by ourselves. For the chain (9) our boundary conditions are the
same as those found earlier in [2, 6]. It is clear that the matrix H = H(m, λ) defining the
transformation (15) may depend on a finite number of shifts of q. In our examples below we
consider only the case when H does not depend on the dynamical variables. Recall that the set
of dynamical variables for chains consists of variables qm,n, qm−1,n where n = N +1, N +2, . . .
and m is fixed.

Finite-dimensional reductions of the chains (3)–(10) obtained by imposing boundary
conditions on two points are considered in section 3. It is shown that if both conditions
are chosen consistent with the L,A pair and the involution h = h(λ) is the same for both ends
then the restricted equation has a large number of integrals of motion. Illustrative examples of
finite chains and their conserved quantities are also represented.

2. Integrable boundary conditions

According to our definition above the boundary condition (13) is integrable if a pair of functions
h = h(λ), H = H(m, λ) = H(m, qm,N , qm,N+1, . . . , qm,N+k, λ) exists such that for any
solution Y (m,N, λ) of the equation Y (m + 1, N, λ) = A(m,N, λ)Y (m,N, λ) the function
Ỹ (m,N, h(λ)) = H(m, λ)Y (m,N, λ) is also a solution of the same equation. Thus the
following equation has to be valid:

H(m + 1, λ)A(m,N, λ) = A(m,N, h(λ))H(m, λ). (16)

This is the main equation for defining integrable boundary conditions.
Let us start with the first equation (see (3)) of the list. It is called the discrete Heisenberg

model and has the following L,A pair:

L =
(
λ − q−1,0

q−q−1,0
− qq−1,0

q−q−1,0
1

q−q−1,0
λ + q

q−q−1,0

)
A =

(
λ − q0,−1

q−q0,−1
− qq0,−1

q−q0,−1
1

q−q0,−1
λ + q

q−q0,−1

)
.

Proposition. Suppose that a boundary condition of the form (13) for the discrete Heisenberg
model (3) is consistent with the L,A pair and the corresponding function H = H(m, λ)

depends only on m and λ. Then it reads as

qm,0 = cqm,1 + (−1)ma

c + (−1)mbqm,1
(17)

where a, b, c are arbitrary constants and a2 + b2 	= 0.

Proof. Evidently the main equation (16) gives rise to a system of four scalar equations on the
elements hi,j (m, λ) of the matrix H(m, λ) (more exactly, we denote hi,j = (H(m, λ))i,j and
h̄i,j = (H(m + 1, λ))i,j )

h̄11

(
λ − f

qm,1 − f

)
+ h̄12

1

qm,1 − f
= h11

(
h(λ) − f

qm,1 − f

)
− h21

qm,1f

qm,1 − f
(18)

−h̄11
qm,1f

qm,1 − f
+ h̄12

(
λ +

qm,1

qm,1 − f

)
= h12

(
h(λ) − f

qm,1 − f

)
− h22

qm,1f

qm,1 − f
(19)

h̄21

(
λ − f

qm,1 − f

)
+ h̄22

1

qm,1 − f
= h21

(
h(λ) +

qm,1

qm,1 − f

)
+ h11

1

qm,1 − f
(20)

h̄22

(
λ +

qm,1

qm,1 − f

)
− h̄21

qm,1f

qm,1 − f
= h22

(
h(λ) +

qm,1

qm,1 − f

)
+ h12

1

qm,1 − f
. (21)
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Here N is taken to be zero. Let us first differentiate equation (20) with respect to the variable
qm,1. This leads to the equation

(
(h21 + h̄21)qm,1 + (h11 − h̄22)

) df

dqm,1
= (h21 + h̄21)f + (h11 − h̄22). (22)

Assuming that (h21 + h̄21)
2 + (h11 − h̄22)

2 	= 0 and integrating (22) one finds an explicit
expression for f

f (qm,1) = qm,1 + (h11 − h̄22)c

1 − (h21 + h̄21)c
or f (qm,1) = h̄22 − h11

h̄21 + h21

containing the constant of integration c. The last term in the right-hand side of (18) now clearly
vanishes, i.e. h21 = 0, because it contains a quadratic factor q2

m,1. The same is true of the first
term in (21), so that h̄21 = 0. Then (20) implies h11 − h̄22 = 0. But this contradicts our
assumption (h21 + h̄21)

2 + (h11 − h̄22)
2 	= 0. Consequently, h21 = −h̄21 and h11 = h̄22.

Returning to the equation (20) again one gets (h(λ)+λ+1)h21 = 0. So one has to examine
two separate subcases: (1) h(λ) = −λ − 1 and (2) h21 = 0. Begin with the first one. Recall
that it is proved above that h21 = −h̄21 and h11 = h̄22. Assume that h21 	= 0, then it follows
from (18), (21) that(

(h22 − h̄11)qm,1 + (h12 + h̄12)
) df

dqm,1
= (h22 − h̄11)f + (h12 + h̄12). (23)

If (h22 − h̄11)
2 + (h12 + h̄12)

2 	= 0 then evidently

f (qm,1) = qm,1 + (h12 + h̄12)c

1 − (h22 − h̄11)c
or f (qm,1) = h12 + h̄12

h̄11 − h22
.

Substitution of this answer into (18) gives immediatelyh21 = 0. Consequently, our assumption
(h22 − h̄11)

2 + (h12 + h̄12)
2 	= 0 is wrong and h22 = h̄11, h̄12 = −h12.

Further analysis of the system (18)–(21) shows that

f = f (m, qm,1) = cqm,1 + (−1)ma

c + (−1)mbqm,1

where a, b, c are arbitrary constants. The constants a and b cannot vanish simultaneously, in
the opposite case one gets qm,0 = qm,1 and the denominator in (3) becomes zero. The matrix
H takes the form

H(m, λ) =
(

1 (−1)mac(2λ + 1)
(−1)mbc(2λ + 1) 1

)
h(λ) = −λ − 1.

The second case gives nothing new. �

The chain might have integrable boundary conditions of a special kind which cannot be
written in the form of (13); these are connected by zeros of the functions p(x) and r(y) in (2).
For instance, the formal constraint qm,0 = ∞ cuts off the chain (3) preserving the first integrals
(see example 1 below). In this special case the matrix H and the involution h = h(λ) can also
be found from (18)–(21):

H(m, λ) =
(

1 (1 + 1/λ)ma
0 1

)
h(λ) = λ

where a is an arbitrary constant.
Below we give a list of boundary conditions corresponding to other equations from the

list (3)–(10).
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(i) Equation (4):

L =
(
λ + eq−q−1,0 −eq

e−q−1,0 −1

)
A =

(
λ + eq−q0,−1 −eq

e−q0,−1 −1

)

e−qm,0 = 0 h(λ) = λ H(m, λ) =
(

1 (−λ)ma

0 1

)
.

We use a, b, c, d to denote arbitrary constants.
(ii) Equation (5):

L =
(
λ + eq

eq−eq−1,0 − eq+q−1,0

eq−eq−1,0

1
eq−eq−1,0 λ − eq−1,0

eq−eq−1,0

)
A =

(
λ + eq

eq−eq0,−1 − eq+q0,−1

eq−eq0,−1

1
eq−eq0,−1 λ − eq0,−1

eq−eq0,−1

)

eqm,0 = ceqm,1 + (−1)ma

c + (−1)mbeqm,1
a2 + b2 	= 0

h(λ) = −λ − 1 H(m, λ) =
(

1 (−1)mac(2λ + 1)
(−1)mbc(2λ + 1) 1

)
.

In the special case eqm,0 = ∞ one has h(λ) = λ,

H(m, λ) =
(

1
(

λ
1+λ

)m
a

0 1

)
.

(iii) Equation (6):

L =
(
λ + q − q−1,0 λ − λ(q − q−1,0)

1 − q + q−1,0 1 + λ(q − q−1,0)

)

A =
(
λ + q − q0,−1 λ − λ(q − q0,−1)

1 − q + q0,−1 1 + λ(q − q0,−1)

)
qm,0 = qm,1 + c h(λ) = λ

H(m, λ) =
(

1 + (1+c)(λ−c)

c(1+λ)2 g(m − 1) g(m)

1
c

(
1+c
1+λ

)2
g(m − 1) 1 − (1+c)(λ−c)

c(1+λ)2 g(m − 1)

)

where c1 = − 1
c

(
λ−c
1+λ

)2
, g(m) = λ(1−λ)

c(1+λ)2

(
1−cm−1

1
1−c1

+ cm1

)
.

(iv) Equation (7):

L =
(
λ + q

q−q−1,0
− q+λ

q−q−1,0
q

q−q−1,0
λ − q+λ

q−q−1,0

)
A =

(
λ + q

q−q0,−1
− q+λ

q−q0,−1
q

q−q0,−1
λ − q+λ

q−q0,−1

)
qm,0 = qm,1 + c h(λ) = −λ

H(m, λ) =
(
(−1)m+1 1−cm1

1−c1
(−1)m

(
(c + 1)cm−1

1 + 2 1−cm−1
1

1−c1

)
(−1)mccm1 (−1)mcm1

)

where c1 = 1
c

− 1 and

qm,0 = cqm,1 h(λ) = −λ H(m, λ) =
(
(−1)m 2(−1)m+1

0 (−1)m+1

)
.

In the special case qm,0 = ∞ the function h = h(λ) and the matrixH(m, λ) can be defined
as follows:

h(λ) = λ H(m, λ) =
(
a b

c d

)
.
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(v) Equation (8):

L =
(

λ + eq−q−1,0 −eq

(λ + 1)e−q−1,0 −1

)
A =

(
λ + eq−q0,−1 −eq

(λ + 1)e−q0,−1 −1

)

e−qm,0 = 0 h(λ) = λ H(m, λ) =
(

1 (−λ)ma

0 1

)
.

(vi) Equation (9):

L =
(
λ + eq−q−1,0 eq

λe−q−1,0 0

)
A =

(
λ eq

λe−q0,−1 −1

)
e−qm,0 = beqm,1 + a h(λ) = 1/λ

H(m, λ) =
(
(−1/λ)m−1 1

λ+1a (−1/λ)m

(−1/λ)mb (−1/λ)m 1
λ+1a

)
.

In the special case e−qm,0 = 0 we have

h(λ) = λ H(m, λ) =
(

1 (−λ)ma

0 1

)
.

These boundary conditions for (9) were earlier found in [2].
(vii) Equation (10):

L =
(
λ + eq

eq−eq−1,0 (λ(1 − µ) − µ) eq−1,0

eq−eq−1,0

eq−1,0

eq−eq−1,0 λ + 1 + (λ(1 − µ) − µ) eq−1,0

eq−eq−1,0

)

A =
(
λ + eq

eq−eq0,−1 (λ(1 − µ) − µ) eq0,−1

eq−eq0,−1

eq0,−1

eq−eq0,−1 λ + 1 + (λ(1 − µ) − µ) eq0,−1

eq−eq0,−1

)
eqm,0 = ceqm,1 h(λ) = λ

H(m, λ) =
(
δ
β

τ
+
(

c
1−c

)2 α
τ

+ δ c
c−1

1
τ
g(m − 1) g(m)

−2 c
c−1

β

τ
− (

c
c−1

)2 1
τ
g(m − 1) − ( c

c−1

)2 α
τ

+ γ − c
c−1

γ

β
g(m − 1)

)

where

α = λ − λµ − µ δ = λ +
1

c − 1
β = 1 + λµ + µ +

α

c − 1

τ =
(
µ +

1

c − 1
− 1

c − 1
µ

)
(λ + 1)2 γ = 1 +

α

τ

(
1 − 1

c − 1

)

c1 =
(
λ +

1

c − 1

)
γ

β
g(m) = 2

αγ c(1 − cm1 )

β(c − 1)(1 − c1)
+ 2β(1 − c)cm1

1

c
.

3. Finite-dimensional reductions and integrals of motion

It is natural to expect boundary conditions consistent with L,A pairs to preserve the
integrability property of the equation. Unfortunately, the problem has not been investigated in
detail, but below we will show that finite-dimensional reductions of equation (1) obtained by
imposing boundary conditions consistent with theL,A pairs inherit a large number of integrals
of motion. In order to construct the integrals of motion we make use of the idea proposed
in [5].

Theorem. Suppose that equation (1) is reduced to a finite interval with ends n− = 1 and
n+ = N by imposing boundary conditions qm,0 = f− and qm,N+1 = f+ consistent with L,A
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pairs such that the corresponding H -matrices are H− = H−(m, λ) and H+ = H+(m, λ)

respectively and involutions h−(λ) and h+(λ) coincide with each other. Then the function

g(λ) = tr
(
T (m, λ)H−1

− (m, λ)T −1(m, h(λ))H+(m, λ)
)

where T (m, λ) = L(m,N, λ) · · ·L(m, 1, λ) is a generating function of the integrals of motion
for the restricted chain, and tr A means the trace of the matrix A.

Proof. At the left end we have the equation

A(m, 1, h(λ)) = H−(m + 1, λ)A(m, 1, λ)H−1
− (m, λ). (24)

A similar equation holds at the right end:

A(m,N + 1, h(λ)) = H+(m + 1, λ)A(m,N + 1, λ)H−1
+ (m, λ). (25)

From the zero-curvature representation

L(m + 1, n)A(m, n) = A(m, n + 1)L(m, n)

it follows that

A(m, 1, λ) = T −1(m + 1, λ)A(m,N + 1, λ)T (m, λ). (26)

Replacing λ → h(λ) in (26) and simplifying by use of (24) and (25) leads to

A(m, 1, λ) = H−1
− (m + 1, λ)T −1(m + 1, h(λ))H+(m + 1, λ)A(m,N + 1, λ)

×H−1
+ (m, λ)T (m, h(λ))H−(m, λ). (27)

Equating the right-hand sides of (26) and (27) gives

A(m,N + 1, λ) = P(m + 1, λ)A(m,N + 1, λ)P−1(m, λ)

where P(m, λ) = T (m, λ)H−1
− (m, λ)T −1(m, h(λ))H+(m, λ). Now it is easy to see that

tr P(m + 1, λ) = tr P(m, λ), i.e. the trace does not depend on time m. The theorem is
proved. �

Example 1. Consider the Heisenberg equation (3) restricted to a finite interval by imposing
the boundary conditions qm,0 = ∞ and qm,N+1 = ∞. This finite-dimensional chain has N

functionally independent integrals of motion:

I1 =
N∑
i=1

1

qm,i − qm−1,i

I2 =
N∑
i=2

1

qm,i − qm−1,i

i−1∑
j=1

qm,i − qm−1,j

qm,j − qm−1,j

I3 =
N∑
i=3

1

qm,i − qm−1,i

i−1∑
j=2

qm,i − qm−1,j

qm,j − qm−1,j

j−1∑
k=1

qm,j − qm−1,k

qm,k − qm−1,k

. . .

In =
N∑

j1=n

1

qm,j1 − qm−1,j1

n−1∏
i=1

ji+1−1∑
ji=i

qm,ji+1 − qm−1,ji

qm,ji − qm−1,ji
.
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Example 2. In the case of Toda chain (4) with the boundary conditions qm,0 = ∞ and
qm,N+1 = −∞ the following integrals can easily be found:

I1 =
N∑
i=1

eqm,i−qm−1,i

I2 = −eqm,N−qm−1,N−1 +
N∑
i=2

eqm,i−qm−1,i

i−1∑
j=1

eqm,j−qm−1,j

I3 = −eqm,N−qm−1,N−1(eqm,N−2−qm−1,N−2 + eqm,N−3−qm−1,N−3)

+eqm,N−qm−1,N eqm,N−1−qm−1,N−2 + eqm,N−qm,N−2

+
N∑
i=3

eqm,i−qm−1,i

i−1∑
j=2

eqm,j−qm−1,j

j−1∑
k=1

eqm,k−qm−1,k .
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